Фото: Сергей Мальгавко/ТАСС
Систему детекции трещин, в которой используются искусственный интеллект и машинное обучение для анализа изображений и видео с камер наблюдения, создали в Новосибирском государственном техническом университете (НГТУ). Разработка позволит избежать риска возникновения аварийных ситуаций и экономических потерь, сообщили ТАСС в пресс-службе вуза.
Как пояснили в университете, трещины в бетоне могут быть незаметными, но при этом приводить к серьезным разрушениям. Их несвоевременное обнаружение увеличивает вероятность обрушения конструкций. Регулярный мониторинг позволяет избежать серьезных финансовых затрат: ремонт аварийных зданий обходится дороже, чем профилактическое обслуживание.
«Современные технологии, такие как машинное обучение, открывают новые возможности для автоматизированной диагностики. В рамках проекта был собран большой набор данных, включающий изображения с различных объектов, создана базовая нейронная сеть. Я обучил ее детектировать трещины в бетоне на основе изображений, обработанных и сегментированных с помощью метода контура (контур делается на специальном приложении, его выделяют для того, чтобы нейронная сеть могла распознавать эти трещины)», — цитирует пресс-служба разработчика Николая Обидина.
Система анализирует видеопотоки с камер, после чего идет обработка данных: искусственный интеллект выявляет трещины на основе обученной модели. Созданная модель показала точность обнаружения трещин на уровне 95%. Проект прошел акселерационную программу НГТУ Reactor, которая реализуется в рамках федерального проекта «Платформа университетского технологического предпринимательства» госпрограммы «Научно-технологическое развитие РФ».
Источник: ТАСС
Свежие комментарии